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The goal of the present paper is the investigation of the final evolution of anisotropic regular structures and
turbulence at large Reynolds number in the multidimensional Burgers equation. We show that we have local
isotropization at small scales of the velocity and potential fields inside cellular zones. For periodic waves, we
have simple decay inside a frozen structure. The global structure at large times is determined by the initial
correlations and for short range correlated fields we have isotropization of turbulence. Finally, we consider the
final behavior of the field, when the processes of nonlinear beating interactions become frozen, and the
evolution of the field is determined only by the linear dissipation.
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I. INTRODUCTION

The well-known Burgers equation in one dimension de-
scribes a variety of nonlinear wave phenomena arising in the
theory of wave propagation, acoustics, plasma physics. and
so on �see, e.g., �1–6��. This equation was originally intro-
duced by Burgers as a model of hydrodynamical turbulence
�7,8�. It shares a number of properties with the Navier-Stokes
equations: the same type of nonlinearity, of invariance
groups and of energy-dissipation relation, the existence of a
multidimensional version, etc �9�. However, Burgers equa-
tion is known to be integrable and therefore lacks the prop-
erty of sensitive dependence on the initial conditions. Nev-
ertheless, the differences between the Burgers and Navier-
Stokes equations are as interesting as the similarities �10�
and this is also true for the multidimensional Burgers
equation

�v

�t
+ �v · ��v = ��2v . �1�

With external random forces the multidimensional Burgers
equation is widely used as a model of randomly driven
Navier-Stokes equation without pressure �11–15�. The three-
dimensional form of Eq. �1� has been used to model the
formation of the large scale structure of the Universe when
pressure is negligible. Known as “adhesion” approximation
this equation describes the nonlinear stage of gravitational
instability arising from random initial density fluctuations
�16–20�. Other problems leading to the multidimensional
Burgers equation, or variants of it, include surface growth
under sputter deposition and flame front motion �21,22�. For
the deposition problem, the velocity in the multidimensional
Burgers equation v=−�� is the gradient of the surface and
the mean-square gradient E�t�= �����x , t��2�= �v2�x , t��,
which is a measure of the roughness of the surface, may

either decrease or increase with time. In such instances, the
velocity potential ��x , t� corresponds to the shape of the
front’s surface, and the equation for � is identical to the KPZ
�Kardar, Parisi, Zhang� equation �4,21,23,24�.

When the initial potential �0�x����x ,0� is a superposi-
tion of one dimensional potentials �0,i�xi�, namely, �0�x�
=�i�0,i�xi� and v0,i�x�=v0,i�xi� where the sum over i runs
over different directions of space, there is no interaction be-
tween the velocity components v0,i�x , t�=v0,i�xi , t�, so that
the evolution of each component becomes determined by a
one-dimensional Burgers equation. But before dealing with
the evolution of fields in the multidimensional Burgers equa-
tion, we now discuss very shortly the evolution of simple
types of velocity fields in the one-dimensional Burgers equa-
tion �1–4�, and use these to study the behavior of “plane”
orthogonal waves in two-dimensional Burgers equation with
different initial spatial scales.

In the limit of very small viscosities �→0 and thus for
Reynolds numbers Re�vL /� going to infinity, a monochro-
matic initial condition v0�x�=k0�0 sin k0x ��0�x�
=�0 cos k0x�, is transformed at t� tnl=1 /k0

2�0 into saw-tooth
wave with gradient �v /�x=1 / t and the same period L0
=2� /k0. It is important that at this stage the amplitude a
=L0 / t and the energy E�t�=L0

2 /12t2 do not depend any more
on the initial amplitude. Thus, if we compare the evolution of
two components v0,i�xi , t� with equal initial potential �0 and
different scales Li �L1�L2�, the initial energy will be much
higher for the component with smaller scale E1�0� /E2�0�
=L2

2 /L1
2�1. But asymptotically, we will have the inverse

situation E1�t� /E2�t�→L1
2 /L2

2�1. For large but finite initial
Reynolds number Re0=�0 /2� the shock fronts have a finite
width 	�t /L0 and at t� tnl Re0 we will reach a linear stage
of evolution where v�x , t�=4�k0 sin�k0x�exp�−�k0

2t�.
Continuous random initial fields are also transformed into

sequences of regions �cells� with the same gradient �v /�x
=1 / t, but with random position of the shocks separating
them. The merging of the shocks leads to an increase in the
integral scale of turbulence L�t� and because of this the en-
ergy E�t�	L2�t� / t2 of random field decreases more slowly
than the energy of periodic signal. The type of the turbulence
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evolution is determined by the behavior of the large scale
part of the initial energy spectrum E0�k�	�2kn. For n	1,
the initial potential is Brownian or fractional Brownian mo-
tion and scaling argument may be used �3,4,8,19,25,26�. In
this case, the turbulence in self-similar and with integral
scale L�t�= ��t�2/3+n. For n
1 the law of energy decay
strongly depends on the statistical properties of the initial
field �4,27–31�. For an initially Gaussian velocity field, the
integral scale L�t� and the energy of the turbulence E�t�

L�t� = �t���1/2ln−1/4
 t��

2�l0
2� ,

E�t� = L2�t�/t2 �2�

are determined only by two integral characteristics of the
initial spectrum : the variance of the initial potential ��

2

= ��0
2� and the velocity variance �v

2 = �v0
2� �3,8,32–37�. Here,

l0=�� /�v is the integral scale of the initial perturbation, and
�� / l0

2= tnl is the nonlinear time. Thus, the energies of two
components with equal initial potential variance �� but with
different scales l0,i , �l0,1� l0,2�, that are very different at t
=0 E1�0� /E2�0�= l2

2 / l1
2�1, can become equal E1�t� /E2�t�

�1 for very large times due to the logarithmic correction.
For large but finite Reynolds number Re0=�� /2�, the shock
fronts have a finite width 	�t /L�t� and due to the multiple
merging of shocks the linear regime take place at very large
times t� tnl exp�Re0

2� /Re0. In the linear stage, the energy de-
cays as Ct−3/2, where C	L0 exp�Re0

2� /Re0.
Now, the goal of the present paper is the investigation of

the evolution of anisotropic structures and turbulence at large
Reynolds number in the multidimensional case, when we
have nonlinear interactions between the harmonic compo-
nents in the different directions. We show that we have local
isotropization of the velocity and of the potential fields inside
a cellular structure. In the case of periodic waves, we have
the decay of this frozen structure. For random initial condi-
tions, the global final structure will be determined by the
long range correlations of the initial field; in the short-range
correlation case we have final global isotropization of turbu-
lence. The other limit we will consider in this paper is the
large time behavior of the field, when the processes of non-
linear self-action and harmonic interaction become frozen,
and the evolution of the field is determined solely by the
linear dissipation.

The paper is organized as follows. In Sec. II, we formu-
late our problem and list some results about the solution of
multidimensional Burgers equation in the limit of vanishing
viscosity and its long time behavior. We also show that we
have local isotropization of the velocity and potential fields.
In Sec. III, we consider the interaction of plane waves and
evolution of periodic structures in two-dimensional Burgers
equation. In Sec. IV, we consider the evolution of anisotropic
multidimensional Burgers turbulence in the inviscid limit.
We also discuss here the influence of finite viscosity and long
range correlations on the late stage evolution of Burgers’
turbulence.

II. MULTIDIMENSIONAL BURGERS EQUATION, THE
LIMIT OF VANISHING VISCOSITY AND THE

LARGE TIME BEHAVIOR

We shall study the initial value problem for the unforced
multidimensional Burgers Eq. �1� and consider only the
potential solution of this equation, namely,

v�x,t� = − ���x,t� . �3�

The velocity potential ��x , t� satisfies the following nonlin-
ear equation:

��

�t
=

1

2
����2 + ��2� . �4�

The equation for the velocity potential � is identical to the
equation �4,21,23�, which is usually written in the terms of
the variable h=�−1 ·�. The parameter � has the dimension of
length divided by time and is the local velocity of the surface
growth. Henceforth, h�x , t� has the dimension of length and
is the measure of the surface’s smoothness. In this case
v=−�� is the gradient of the surface. The roughness of the
surface is measured by its mean-square gradient

E�t� = �����x,t��2� = �v2�x,t�� = �
i

Ei�t� , �5�

Here, angular brackets denote ensemble averages or space
averages for periodic structures. For one-dimensional homo-
geneous fields, E�t� is the energy density and always de-
creases with time. At the initial stage of evolution and in the
limit of vanishing viscosity, the multidimensional Burgers
equation corresponds to the free motion of initially spatially
uniformly distributed independent particles having initial ve-
locities v�x , t�. In Lagrangian representation, the velocity of
the particle V�t ;y� is thus a constant. Here, y is the initial
�Lagrangian� coordinate of the particle. In the one-
dimensional case, the increasing in the length of an elemen-
tary Eulerian interval x=y+ tV is compensated by the
decreasing in length x=y− tV of the steepening interval
and therefore the energy of the wave �the mean roughness of
the curve� is conserved. After shock formation�s�, the energy
of the wave decreases with time. In the multidimensional
case, the modification of the elementary Eulerian volume
depends also on the initial curvature of the perturbation and
we do not generally have compensation of steepening and
stretching volumes. Thus, for d
1 the roughness of the sur-
face, measured by its mean-square gradient E�t� �see Eq. �5��
may either decrease or increase with time �27,31�. The in-
crease of the mean-square gradient in the multidimensional
Burgers equation �in contrast with d=1� comes from the non-
conservative form of that equation. Nevertheless, we will use
the expression “turbulence energy” for the value of E�t� and
call Ei�t�= ���� /�xi�2�= �vi

2� the energy of the i-th velocity
component.

Using the Hopf-Cole transformation �38,39�,

��x,t� = 2� log U�x,t� , �6�

one can reduce Eq. �1� to the linear diffusion equation
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�U

�t
= ��2U, U�x,0� = U0�x� = exp�0�x�

2�
� . �7�

The goal of the present paper will be the investigation of
the evolution of regular structures and turbulence at large
Reynolds number. So, at least for not very large times, we
can use the solutions of Burgers equation in the limit of
vanishing viscosity. The other limit we will consider is the
long time behavior of the field, when the processes of non-
linear self-action and harmonic interaction become frozen,
and the evolution of the field is determined only by the linear
dissipation. In that case we will use the linearization via the
Hopf-Cole transformation �6�.

A. Limit of vanishing viscosity

In the limit of vanishing viscosity �→0, use of the
Laplace’s method leads to the following �maximum repre-
sentation” for the potential velocity field �3,19,38�

��x,t� = max
y

��x,y,t� , �8�

��x,y,t� = �0�y� −
�x − y�2

2t
, �9�

v�x,t� =
x − y�x,t�

t
= v0�y�x,t�� . �10�

Here, �0�y� is the initial potential and v0�x�=−��0�x�. In
Eq. �10�, y�x , t� is the Lagrangian coordinate where the func-
tion ��x ,y , t� achieves its global or absolute maximum for a
given coordinate x and time t. It is easy to see that y is the
Lagrangian coordinate from which starts the fluid particle
which will be at the point x at time t �3�.

At large times, the paraboloidal peaks in Eq. �9� define a
much smoother function than the initial potential �0�y�. Con-
sequently, the absolute maximum of ��x ,y , t� coincides with
one of the local maxima of �0�y�. In the neighborhood of
any local maximum yk we can represent the initial potential
in the following form:

�0�x� = �0,k
1 − �
i

�xi − yi,k�2

2Li
2 � , �11�

where xi now are the principal axes of the local quadratic
form describing the potential near the local maximum, and
the Li the radii of curvature along that direction. At relatively
large times, the Eulerian velocity field v�x , t� in the whole
space will be determined by the particles moving away from
the small regions near the nearest local maximum of �0�x�

yi�x,t� =
�xi − yi,k�

�1 + �0,kt/Li
2�

. �12�

Then, the Lagrangian coordinate y�x , t� becomes a discon-
tinuous function of x, constant within cells centered around
each local maximum of �0�x�, but jumping at the boundaries
between cells �3,19�. The velocity field v�x , t� has disconti-
nuities �shocks� and the potential field ��x , t� has gradient

discontinuities �cusps� at the cell boundaries. From Eqs. �10�
and �12�, it becomes clear that inside the cells the velocity
and potential fields have a universal isotropic and self-
similar structure

��x,t� = �0�yk� −
�x − yk�2

2t
. �13�

v�x,t� =
x − yk

t
. �14�

One can see that due to the nonlinearity, there is local isotro-
pization of the velocity field in the neighborhood of every
local maximum of �0�x�. The longitudinal �perpendicular to
the cell boundaries� component of the velocity vector v�x , t�
consists of a sequence of saw-tooth pulses, just as in one
dimension. The transverse component�s� consist of se-
quences of rectangular pulses. At large times, the global
structure and evolution of the velocity and potential fields
will be determined by the properties of local maxima �0�yk�.
In the case of random initial conditions, cell wall motion
results in continuous change in cell shape with cells swal-
lowing their neighbors and thereby inducing growth of the
external scale L�t� of the Burgers turbulence.

B. Long time limit of the solution

Let us now discuss the long time limit of the solution of
Burgers equation. Consider a group of perturbation with a
bounded initial potential ��0�x�2�	� assuming that �0�x� is
a periodic structure or homogeneous noise with rapidly de-
creasing probability distribution of the potential values �0.
For such a perturbation in U�x , t� we separate a constant

component Ū

U�x,t� = Ū + Ũ�x,t� = Ū�1 + u�x,t�� . �15�

Here, u�x , t�= Ũ�x , t� / Ū is the relative perturbation of field

U�x , t�. Inserting Eq. �15� into Eq. �7� we see that Ū does not

depend on time. Here, Ũ0�x� and u0�x� are fields with zero
mean value �over the period or statistically in the noise case�.
As time goes on, the viscous dissipation and smoothing of
the inhomogeneities causes the amplitude �variance� of the

field Ũ�x , t� to decrease. At times when its relative amounts

Ũ become small in comparison with Ū ��u��1� the solution
�6� will become equal to

v�x,t� = − 2� � Ũ�x,t�/Ū = − 2� � u�x,t� . �16�

As Ũ�x , t� and u�x , t� satisfy the linear diffusion equation,
then v�x , t� also at these times obeys the linear equation. This
is precisely the definition of the beginning of the linear stage.
The complete accumulated nonlinear effects are described in
this solution by the nonlinear integral relation between the

initial velocity field v0�x� and the fields Ũ�x ,0�, Ū Eqs. �3�
and �7�, and are characterized by the value ��0� /�	Re0.
Here, �0 is the characteristic change in amplitude of �0,
and Re0 is the initial Reynolds number.

From Eq. �16�, it is easy to obtain the well known result
that for Re0�1, initial harmonic conditions asymptotically
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keep their harmonic form, but with amplitudes not depending
any more on the initial amplitudes �1,2�. At large initial Rey-
nolds number, homogeneous Gaussian field v0�x� transforms
in the nonlinear stage into a series of saw-tooth waves with
strong non-Gaussian statistical properties �3,35�. Neverthe-
less at very large time, when the relation �16� is valid, the
distribution of the random field v�x , t� with statistically ho-
mogeneous initial potential �0�x� converges weakly to the
distribution of homogeneous Gaussian random field with
zero mean value �27�. This stage of evolution is known as the
Gaussian scenario in Burgers turbulence. In the absence of
long correlations in the initial potential field the potential
�and velocity consequently� will thus have a universal cova-
riance function �3,27�. But the amplitude of this function is
nonlinearly related to the initial covariance function of the
field �0�x� and increases proportionally to exp�Re0

2� with in-
creasing in initial Reynolds number Re0. When the initial
potential has long-range correlations ����0�x��0�0���
= �x�−�F�x /x�, 0	�	3, at large x�, we will have conserva-
tion of these in the linear stage as long correlation in the
anisotropy of the field F�x /x� �27�.

III. EVOLUTION OF PERIODIC STRUCTURES AND THE
INTERACTION OF PLANE WAVES IN TWO-

DIMENSIONAL BURGERS EQUATION

It was shown in the previous section that at large time we
will reach a cellular structure of the field with universal be-
havior of potential and velocity inside each cell. The global
structure of the field will be determined by the properties of
the local maxima of initial potential.

Let us consider the evolution of a periodic structure

�0�x1,x2� = 2�0 cos�k2x2�cos�k1x1� �17�

in the two-dimensional Burgers equation. The evolution of
this structure can also be interpreted as the interaction of two
plane waves with equal wave number modulus k0

�0�x1,x2� = �0 cos�k1x1 + k2x2� + �0 cos�k1x1 − k2x2� .

�18�

Here, k1=k0n1=2� / l1, k2=k0n2=2� / l2 and n is a unit vector
with the component n1 ,n2. For each of these noninteracting
plane waves, the energy of the i-th component is Ei,p�t�
=E�t�ni

2, where E�t� is the energy of the plane wave and
E�0�=�0

2k0
2 /2.

For �→0 the plane wave will be transformed at t� tnl
=1 /k0

2�0 into a saw-tooth wave with gradient �v /�x=1 / t and
energy E�t�=�2 /3k0

2t2. For large but finite Reynolds number,
we will reach a final linear stage of evolution where v�x , t�
=4�k0 sin�k0x�exp�−�k0

2t�. We now consider these two cases
one after the other.

A. Final stage of evolution at infinite Reynolds number

Consider first the late stage of evolution of the periodic
structure at times t� tnl. At this stage the velocity has the
universal form �14� in each cell, where yk are the maxima of
the initial potential �17�. For this particular initial potential,
there are two sets of maxima of equal value corresponding to

the conditions cos k1x1=cos k2x2=1 and cos k1x1=cos k2x2
=−1. The shock lines �cell boundaries� of the velocity field
do not move in time, and they are situated on the midpoint
and orthogonal to the vectors connecting each local maxi-
mum to its nearest neighbors, thus defining a cellular struc-
ture with the local maxima at the cell centers. Due to the
symmetry of initial conditions, the velocity field is symmet-
ric over the point �l1 /2, l2 /2�. Assume now that l1� l2 and
consider the velocity fields inside the region S:
�x1� �0, l1 /2� ,x2� �0, l2 /2��, see Fig. 1.

The region S is divided by the shock line in the regions S1
and S2

S1:
0 � x2 � −
l1

l2
x1 +

l1
2 + l2

2

4l2
2 � . �19�

The center of the cell inside the region S1 is at the point
�x1=0 , x2=0� and inside region S2, it is at the point �x1
= l1 /2, x2= l2 /2�. Consequently for the velocity fields, one
can get

v1 = x1/t, v2 = x2/t, x � S1,

v1 = �x1 − l1/2�/t, v2 = �x2 − l2/2�/t, x � S2. �20�

Thus, at large time, we have a frozen structure of the field
with decreasing amplitude 	t−1. For the energy of the veloc-
ity components, we obtain from expressions �20�

E1�t� =
l1
2

12t2
1 −
l1
2

l2
2� =

�2

3k0
2n1

2t2
1 −
n2

2

n1
2� ,

FIG. 1. An example of a two-dimensional cellular structure ob-
served when looking at the isovalues of the potential ��x1 ,x2� when
k1�k2.
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E2�t� =
l2
2

48t2
1 +
l1
4

l2
4� =

�2

12k0
2n2

2t2
1 +
n2

4

n2
1� . �21�

From Eq. �20�, we get that in the case of very anisotropic
fields �l1� l2�, �n1�1,n2�1� the velocity component v1 will
reproduce the behavior of the velocity in the one-
dimensional Burgers equation, but the large scale component
will now have period L= l2 /2 instead of the initial L= l2.
Comparing now the decay of the periodic structure �17�,
which is a superposition of two plane waves, with the energy
decay Ei,p that each component would have in the one-
dimensional case, we see that for l1� l2, the energy of the
small scale E1��2 /3k0

2n1
2t2�Ei,1=�2n1

2 /3k0
2t2 decays simi-

larly, but the energy of the large scale component E2
��2 /12k0

2n2
2t2�Ei,2=�2n2

2 /3k0
2t2 has a much slower evolu-

tion. This shows that the two components do not evolve in-
dependently in the two-dimensional case.

B. final stage of evolution at finite Reynolds number

Consider now the linear stage of the evolution of the pe-
riodic structure, when the Hopf-Cole solution is reduced to
the linear relation �16� between the velocity field v�x , t� and

the solutions Ũ�x , t�, u�x , t� of the linear diffusion Eq. �7�.
Using the relation exp�z cos ��= I0�z�+2�m=1

� Im�z�cos m�,
where Im�z� are modified Bessel functions, we can write the
solution of this equation in the form �7� and �17�

U�x,t� = I0
2�Re0�2�

m=1

�

I0�Re0�Im�Re0�

��cos�m�k1x1 + k2x2�� + cos�m�k1x1 − k2x2���

�e−�m2�k1
2+k2

2�t + 2�
n=1

�

�
m=1

�

Im�Re0�In�Re0�

��cos��n + m�k1x1 + �n − m�k2x2�

�e−���n + m�2k1
2+�n − m�2�k2

2��t + cos��n − m�k1x1

+ �n + m��k2x2��e−���n − m�2k1
2+�n + m�2�k2

2��t� , �22�

where Re0=�0 /2�. Here, the first sum describes the nonlin-
ear evolution of the two plane waves and the double summa-
tion is the interaction between the plane waves. From Eq.
�22�, we find that the constant component appearing in Eq.

�15� is Ū= I0
2�Re0� and Ũ�x , t�=U�x , t�− Ū. In the linear stage

of evolution, when u�x , t�= Ũ�x , t� / Ū�1 we have from Eqs.
�6� and �15�

��x,t� = �̄ + �̃�x,t�, �̃�x,t� � 2�u�x,t� , �23�

where �̄=2� log Ū. The asymptotic behavior of the potential

�shape of the surface� �̃�x� will be determined by the lower
frequencies of the decaying exponential solution �22�. For
31/2k2
k1
k2, we have

�̃�x,t� � 4��I1�Re0�/I0�Re0�� � cos�k1x1�cos�k2x2�e−��k1
2+k2

2�t

�24�

and consequently the velocity components vi decay indepen-
dently like the i-th component of a plane wave

v1�x,t� = 4�k1�I1�Re0�/I0�Re0��

� sin�k1x1�cos�k2x2�e−��k1
2+k2

2�t, �25�

v2�x,t� = 4�k2�I1�Re0�/I0�Re0��

� sin�k2x2�cos�k1x1�e−��k1
2+k2

2�t, �26�

which is equal to the linear solution of the one-dimensional
Burgers equation for small Reynolds numbers.

But for 31/2k2	k1, the nonlinear interaction between the
plane waves will change the asymptotic evolution of the po-
tential �shape of the surface�. Now the leading term in Eq.
�22� is, along axis x1

�̃�x,t� � 2��I2�Re0�/I0�Re0�� � cos�2k2x2�e−��4k2
2�t �27�

and will be the second harmonic for axis x2,

v2�x,t� = 4�k2�I2�Re0�/I0�Re0�� � sin�2k2x2�e−��4k2
2�t

�28�

and so we have depression of the amplitude of the potential
along the axis x1. The evolution of the parallel gradient on
the surface along x1, which is the velocity component v1, is
still determined by Eq. �25� and so it will decay faster than
the transverse gradient v2 along x2.

Thus, due to the nonlinearity which leads to the genera-
tion of cross-wave numbers, we will have at the late linear
stage for the velocity component v2 the dominance of the
second harmonic of the initial spatial frequency k2. This will
be true even for small Reynolds numbers. For very large
Reynolds numbers Re0, we will have I1�Re0� / I0�Re0��1 and
the amplitude of v1, v2 do not depend on the amplitude of the
initial perturbation.

C. Transition processes at infinite Reynolds number

Let us now consider the evolution of very anisotropic
fields when the angle between interacting plane waves is
small n1�n2. Consider first a more general situation when a
periodic plane wave initial condition is modulated by a large
scale function M�x�, so that the initial potential can be writ-
ten as

�0
M�x� = M�x��0 cos�k1x1� . �29�

We assume that the function M�x� is characterized by the
scales LM,i and LM,i� l1=1 /2�k1. The case that we consid-
ered before of two plane interacting waves �17� corresponds
to M�x�=2 cos�k2x2� and we will pursue now the study of
that case. The initial velocity field corresponding to Eq. �29�
is thus

v1,0�x1,x2� � k1�0 sin�k1x1�M�x1,x2� , �30�
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v2,0�x1,x2� = − �0 cos�k1x1�Mx2
� �x1,x2� . �31�

In the limit of vanishing viscosity �→0 the evolution of the
velocity field is described by the Eq. �10� and v�x , t�
=v0�y�x , t��, where y�x , t� is the Lagrangian coordinate from
which starts the fluid particle that will be at the point x at
time t. Because LM,i� l1, the velocity component v2�v1 and
for times t� tnl,2=Lm,2

2 /�0, one can neglect the drift of the
particles along x2 axis. In that case, we get for the Lagrang-
ian coordinates

X1�y1,y2,t� = y1 + tk1�0 sin�k1y1�M�y1,x2� ,

X2�y1,y2,t� = y2. �32�

For t	 tnl,1=1 /k1
2�0, this solution v�x , t�=v0�y�x , t�� is

single-valued. But for t
 tnl,1, we need to introduce the
shock to remove the multivalued solution. In a quasistatic
approximation, we assume that the evolution of the velocity
component v1�x1 ,x2 , t� follows the one-dimensional Burgers
equation with an initial harmonic perturbation v1,0
=A sin�k1x1�. The amplitude of the perturbation A
=k1�0M�x1,m ,x2� �x1,m= l1m� now depends slowly on the co-
ordinate x2 as a parameter and can be taken as a constant
independent of x1 over each period of the harmonic pertur-
bation.

Let us now consider the nonlinear stage of evolution
tnl,1� t� tnl,2 when the velocity component v1 transforms
into saw-tooth waves. Consider the region when M�x1 ,x2�

0. It is easy to see that for time t� tnl,1, each period
l1�m−1 /2�	x1	 l1�m+1 /2� will be reached by particles
coming from a small region near the point x1,m= l1m and the
solution of the equations x1=X�y1 ,y2 , t�, x2=X2 can be writ-
ten as

y1 − x1,m =
x1 − x1,m

1 + tk1
2�0M�x1,m,x2�

, y2 = x2. �33�

The shocks will lie on the line x1,s= l1�m+1 /2�. From Eqs.
�32� and �33�, we also get for the velocity components inside
l1�m−1 /2�	x1	 l1�m+1 /2� �taking for M 
0�

v1�x1,x2,t� =
x1 − y1,m

t

1 −

1

1 + tk1
2�0M�x1,m,x2�� ,

v2�x1,x2,t� = − �0Mx2
� �x1,m,x2�cos
 k1x1

tk1
2�0M�x1,m,x2�� . �34�

From this equation, one can see that for t� tnl,1 the velocity
component v1�x1 ,x2 , t� is transformed into a saw-tooth wave
v1��x1−y1,m� / t like in the one-dimensional case. This
means that we have a full depression of the initial modula-
tion amplitude of this component. On the other hand, the
velocity component v2 loses its periodic modulation along x1
and becomes v2,0�x1 ,x2 , t��−�0Mx2

� �x1 ,x2� for positive M
and v2,0�x1 ,x2 , t���0Mx2

� �x1 ,x2� for negative M. Comparing
with Eq. �31�, we see that the energy of this component has
increased by a factor of 2 with respect to the initial energy.

For this kind of two-scale initial conditions, the velocity
field can also be split in the two “slow” and “fast” parts

v�x,t� = vl�x,t� + vs�x,t�, vl�x,t� = �v�x,t�� , �35�

where the brackets � . . . � means the averaging over period l1.
Here, vl�x , t� is the large scale component and vs�x , t� is the
small scale component. We now assume that the evolution of
the small scale component vs may be described in a quasi-
static approximation. The mean velocity vl has a length scale
of the order of LM,i, and at the initial stage t� tnl,M
=LM,i

2 /�� one can neglect nonlinear distortion and dissipa-
tion of this component. Then from Eq. �4�, we have

�vl�x,t�
�t

= −
1

2
� �vs

2�x,t�� = −
1

2
� Es�x,t� . �36�

The integration of this equation over t give the evident ex-
pression for the coherent component

vl�x,t� = − ����x,t�� �37�

Here, we have used the Eq. �4� for the potential ��x , t�. From
Eq. �36�, we have that the generation of the large scale com-
ponent is determined by the gradient of the energy of small
scale component. But the periodic modulation Es�x , t� at t
� tnl,1 does not depend anymore on the initial amplitude, so
that at this time there is no generation of the large scale
component. The gradient of mean potential ���x , t��
=�0�M�x��− l1

2 /16t at this stage is independent of t and from
Eq. �37� we get

vl�x,t� = − ����x,t�� = − �0 � �M�x�� . �38�

The amplitude of the small scale component is l1 / t, while the
amplitude of the large scale component is in order �0 /LM,i
and it means that at t
LM,il1 /�0 the main part of energy is in
the large scale component. The nonlinear distortion of large
scale component is significant at t
min�LM,i

2 � /�0. The final
evolution of this component now strongly depends on the
properties of the modulation function M�x�.

For the periodic structure �17� when k1�k2 we have that
the plane wave �0 cos�k1x1� is modulated by the large scale
function M�x�=cos�k2x2� �29�. The initial perturbation in this
case is a periodic structure with periods l1=2� /k1, l2
=2� /k2 and l1� l2.

Before the nonlinear distortion of large scale component
t� tnl,2= l2 /��, the evolution of structure take place like in
general case of modulated wave �29�. The velocity compo-
nent v1�x1 ,x2 , t� is transformed into a saw-tooth wave �Fig.
2� and we have a fast depression of the initial modulation
amplitude of this component �Fig. 2�. The velocity compo-
nent v2 loses its periodic modulation over x1 and
v2,0�x1 ,x2 , t���0�cos�k2x2��x2

� . The period of this component
is one half the initial period �Fig. 3� and the energy increases
by a factor 2 in comparison with the initial energy. The be-
havior of the energy is shown on the Fig. 4.

IV. EVOLUTION OF ANISOTROPIC MULTIDIMENSIONAL
BURGERS TURBULENCE

A. Intermediate stage of evolution of an anisotropic
random field

By Burgers turbulence, we mean here the Burgers prob-
lem, with random initial conditions, see �5� and, in this sec-
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tion, we will consider the intermediate stage of evolution of
an anisotropic random field under the two-dimensional Bur-
gers equation. Let us assume that the initial potential
�0�x1 ,x2� is random and strongly anisotropic field with the
spatial scales l1� l2. The initial energy Ei�t�= �vi

2�
= ���� /�xi�2�=�� / li

2 for the velocity component v1, E1�0�, is
in this case much larger than the energy of the large scale
component v2, E2�0�. We can introduce the nonlinear time of
i-th component as tnl,i= li

2 /��. For t� tnl,2, the drift of the
Lagrangian particles in direction x2 is relatively small. Then
one can assume y2=x2 in Eq. �9� and consider the one-
dimensional problem with the initial potential �0�y1 ,x2 , t�,
where x2 is a parameter.

Due to the condition l1� l2, the first shock lines in the
Lagrangian coordinates are on the points where �� /�y1 has a
minimum. In Eulerian space, the shocks are oriented prima-

rily along the x2 axis and their length in this direction in-
crease in time. For t� tnl,1, the velocity field v1�x1 ,x2 , t�
transforms to the sequence of triangular pulses

v1�x1,x2,t� =
x1 − y1,k�x1,x2,t�

t
,

for x1,k
s 	 x1 	 x1,k+1

s , �39�

where y1,k�x1 ,x2 , t� is the coordinate of the absolute maxi-
mum of Eq. �9� over y1 with y2=x2. The shock positions
x1,k

s �x2 , t� are

x1,k
s =

y1,k+1 + y1,k

2
+ vkt ,

vk =
�0�y1,k�x1,x2�,x2� − �0�y1,k+1�x1,x2�,x2�

y1,k+1�x1,x2� − y1,k�x1,x2�
. �40�

It means that at fixed x2 the interval x1,k
s 	x1	x1,k+1

s will be
covered by the particles from a small region near the La-
grangian point y1,k�x1 ,x2 , t�, and for the velocity component
v2, we get

v2�x1,x2,t� = −� ��0�x1,x2�
�x2

�
x1=y1,k�x2,t�

,

for x1,k
s 	 x 	 x1,k+1

s . �41�

The velocity v2�x1 ,x2 , t� does not depend on x1 between the
shock-lines x1,k

s �x2� and x1,k+1
s �x2�. The collision of the shocks

in a one-dimensional Burgers equation is equivalent to the
fact that at some point x� two adjacent shock lines x1,k

s and
x1,k+1

s touch each other. Then this point will be developed
into new shock lines x1,k

s,��x2� with a length along axis x2
increasing in time and whose ends transforms into lines x1,k

s ,
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FIG. 2. Evolution of v1�x2 , t�. Note the quick full depression of
that component when the scale l1 along x1 is much smaller than the
scale l2 along x2.
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FIG. 3. Evolution of v2�x2 , t�. This component doubles its fre-
quency along x2 and actually gains energy for moderate times.

FIG. 4. Evolution of the two velocity components relative ener-
gies. The energy E2 of component 2 actually increases for some
time and decays much slower than the energy E1 of the first com-
ponent, when the two energies are initially quite different, showing
that the two components can exchange energy between themselves.
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x1,k+1
s . Thus at tn2,1� t� tnl,1 the velocity field will have a

cellular structure, the borders x1,k
s �x2� of the cells obeying Eq.

�40�, so that the velocity component v1�x� will have a uni-
versal structure �39�. Velocity component v2�x� inside the
cell does not depend on x1 and along the axis x2 reproduces
the behavior of v2 along the line x1=y1,k�x2 , t� �41�. The evo-
lution of the potential is plotted on Fig. 5.

The statistical problems of the velocity component v1 at
this stage are similar to the properties of one-dimensional
Burgers turbulence. The integral scale L1�t� and the energy
E1�t�	�� / t of the component v1 are described by the ex-
pressions �2�, where �� is the variance of its initial two-
dimensional potential �0 and l0= l1 is the integral scale of v1
component L1=�� /�v1

. Due to the merging of the shock
lines the integral scale of the turbulence along the axis x1

increases with time L1�t�	�t���1/2 and at t	 tnl,2, when
L1�t�� l2 and E1�t��E2�0� we need to take into account the
nonlinear distortion along the axis x2. At t� tnl,2 the potential
and velocity fields have a universal isotropic and self-similar
structure inside the cells �Eqs. �13� and �14��. The boundary
of the cells on this stage degenerate into straight lines
�planes, in three dimensional case�. The multiple merging of
the cells will lead to the establishment of statistical self-
similarity and isotropization of the field. In the next section,
we will show how the statistical properties of the isotropic
multidimensional Burgers turbulence are connected with the
parameter of the anisotropic initial perturbation.

B. Isotropisation of the multidimensional Burgers turbulence

The statistical properties of the Burgers velocity field v
�Eq. �10�� in the limit �→0 are determined by the statistical
properties of the absolute maxima coordinate y�x , t� of the
function �9�. In the one-dimensional case, the problem of the
absolute maximum is reduced to the problem of finding the
crossing of the random signal �0�x� by the nonhomogeneous
function �x−y�2 /2t+H. The asymptotic behavior of the field
at large t is determined by the maximum whose amplitude is
higher than the variance of the initial potential. That is why
one can use some results of the theory of extremal processes
�3,35,40�. In the multidimensional case, the problem of the
peaks statistics of the Gaussian field is rather well-known for
the isotropic and homogeneous field �41�. But for the Bur-
gers turbulence, we need to find the statistical properties of
the absolute maximum of the nonhomogeneous and aniso-
tropic scalar field ��x ,y , t�. In paper �42�, it was shown that
at large time t this problem is reduced to the problem of
finding the statistical properties of extrema of random field
�0�x� whose values are much greater than the variance ��.

Let us assume the initial potential �0�x� is a random
Gaussian field and its correlation function has the following
form:

��0�x��0�x + z�� = B��z� = ��
2�

i=1

d

Ri�zi� , �42�

Ri�zi� = 1 −
zi

2

2!l0,i
2 +

zi
4

4!l1,i
4 + . . . �43�

We assume also that the correlation function decreases rather
fast at large distances B��z����

2 when �z�
 lst. Then the
values of the Gaussian initial field �0�x� will be statistically
independent for two points x1 and x2 such that their distance
is larger than lst, �x1−x2�
 lst.

In the limit of vanishing viscosity, we have “maximum
representation” �9� for the solution of the potential. In this
solution the velocity field v�x , t� �10� is determined by the
coordinate y of the absolute maximum of function ��x ,y , t�.
Let Q�H ,Vk� denote the cumulative probability and
Wmax�H ,Vk� denote the probability density of the absolute
maximum in an elementary volume Vk

Q�H,Vk� = Prob�� 	 H,y � Vk� , �44�

(b)

(a)

FIG. 5. Evolution of potential for an initially anisotropic random
field. The first figure is the initial potential �0�x1 ,x2� and the second
is the potential ��x1 ,x2 , t� at late times when the stage of isotropiza-
tion has been reached.
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Wmax�H,Vk� = QH� �H,Vk� . �45�

Here, we introduce the elementary volume Vk whose scale
is much greater than lst, but much smaller than the integral
scale of turbulence L�t�. The probability for the absolute
maximum to be contained between H1 and H1+H1 with the
coordinate y�x , t��Vk equals to that one for the absolute
maximum H1� �H ,H+H� to lie in Vk and to be less than
H in magnitude for outer intervals Vk

Prob�y � Vk,H � �H1,H1 + H��

= Wmax�H,vk�HQ�H,Vk� . �46�

Here, we propose that the absolute maximums are statisti-
cally independent in the intervals Vk and Vk. The prob-
ability for coordinate y�x , t� to fall into Vk can be obtained
by the integration of Eq. �46� with respect to H

Prob�y � Vk� =� Wmax�H,Vk�Q�H,Vk�dH . �47�

After the integration of Eq. �47� by parts, we have

Prob�y � Vk� =� N�H,Vk�QH� �H�dH , �48�

where Q�H� is the integral distribution function of the abso-
lute maximum in the whole space. In Appendix in �42�, it
was shown that for large H the integral distribution function

Q�H,Vk� = exp�− N�H,Vk�� �49�

is determined by the mean number of extrema N�H ,Vk�
with value larger than H.

Let us first consider the statistical properties of the extre-
mum of the homogeneous random field �0�x�. It is known
that for smooth fields, the number of crossings of some high
level asymptotically tends to the number of maxima and
number of extrema. It means that all the peaks above some
high level have only one extremum, which is the maximum
of this peak. Thus, we will consider first the properties of
extremum of the field �0�x�. Using these properties of �
function one can obtain for the mean number N�H ;V�
= �Nexp� of extremum with the value greater than H in some
volume V

N�H;V� =��
V

����0��J�aij��E��0 − H�dx� . �50�

Here, E�s� is the Heaviside unit function, and J is the Jaco-
bian of the transformation

J�aij� = �aij�, aij =
��0�x�
�xi � xj

. �51�

For the homogeneous field �0�y�, one can introduce the den-
sity of extremum as next�H ;V�=N�H� /V. The density of next
in this case is determined by the joint probability distribution
function of the �0, their gradient vi=��0 /�xi and tensor aij
=��0 /�xi�xj. For the homogeneous Gaussian field W�0,vi,aij
=Wv�vi�W�0,aij

��0 ,aij� and from Eq. �50�, we have for the
density of extremum

next�H� = Wv�0��
H

�

dS� daijJ�aij�W�0,aij�S,aij�
. �52�

For the Gaussian field, the probability density function
�p.d.f.� of the field �0�x� and its derivative are determined by
the correlation function of �0�x� �42�. In Eq. �52�, we will
integrate over the conditional probability Wcon�aij /S�
=W�aij ,S� /W�0

�S� and will get

next = Wv�0��
H

�

dSW�0
�S�� daijJ�aij�Wcon�aij/S� . �53�

Using the properties of Gaussian variables, one can receive
that the conditional expected value of aij is �aij�con
=S�aijS� /��

2 . In the problem of the Burgers turbulence at
large time the asymptotic of next of high value H is impor-
tant. Thus in conditional averaging we have

�J�aij��con � J��aij�con� � �
i=1

d

�aii�con =
Sd

l0,eff
2d . �54�

Here, we introduce the effective length l0,eff

l0,eff
d = �

i=1

d

l0,i �55�

and take into account that �aii
2�=��

2 / l0,i
4 . Finally, we obtain

from Eqs. �53� and �54� for the density of extremum the
following expression:

next�H� = Wv�0��
H

�

dSW�0
�S�

Sd

leff
2d

=
1

�2��d+1/2leff
d �

H/��

�

Sde−S2/2��
2
dS

� 
 H

��
�d−1 1

�2��d+1/2leff
d e−H2/2��

2
. �56�

Thus, from Eq. �56�, one gets that the mean number of ex-
trema of an anisotropic field �0�x� is determined by some
effective spatial scale leff, which is the geometrical mean of
the spatial scales l0,i. For relatively large values of H, the
density of extremum �56� is equal to the density of events
where the random field �0�x� is larger than H.

For the homogeneous field N�H ;V�=Vnext�H�, where
next�H� is described by the Eq. �56�. For the nonhomoge-
neous field, even in one-dimensional case, the expression for
N is more complicated. We assume that the nonhomogeneous
field is ��x�=�0�x�−��x� and ��x� is a smooth function in
scale of �0�x�. Then in a quasistatic approximation one can
receive for the mean number of events N�H ;V� such that
��x�
H in a volume V the following expression:

N�H;V� = �
V

next�H + ��x��dV , �57�

where next�H� is determined by the expression �56� and is the
density of extremum of the statistically homogeneous func-
tion �0�x�.
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At large time, the paraboloid �= �x−y�2 /2t in Eq. �9� is a
smooth function in the scale of the initial potential. Then for
the mean number of maxima, one can use a quasi-static ap-
proximation �57� and

Q�H� = exp�− N��H�� �58�

N��H� =� next
H +
�x − y�2

2t
�dV . �59�

Here, N��H� is the mean number of extrema of ��x ,y , t� in
the whole space with magnitude greater than H and next�H� is
the density of the number of extremum of the initial homo-
geneous potential �0�x� with value greater than H. For H
��� the density next�H� is determined by the expression �56�
and we have

N��H� =
1

�2���d+1�/2leff
d � 
 H

��
�d−1

e−�H + y2/2t�2/2��
2
dy

� 
 H

��
�d−1 1

�2�

 ��

2 t

Hleff
2 �d/2

e−H/2��
2
. �60�

In Eq. �58�, we integrate over the infinite space, but the ef-
fective volume ���

2 t /Hleff
2 �d/2 is determined by the paraboloid

term in Eq. �58�. Now the effective number of independent
local maximum in initial perturbation is Nmax	���t / leff

2 �d/2

and increases with time. When Nmax�1, we can introduce
the dimensionless potential h as follows:

H = h��, h = h0�1 + z/h0
2� , �61�

where h0=H0�� and H0 is the solution of the equation
N�H0�=1

h0 � d1/2
log
��t

leff
2 �2��1/d�1/2

, ���x,t�� � ��h0. �62�

Thus, we have a logarithmic growth of mean potential. The
dimensionless potential has a double exponential distribution

Q�z� = exp�− exp�− z�� ,

Qh�h� = exp�− exp�− �h − h0�h0�� , �63�

One can see that for t� tnl= leff
2 /��, we have Nmax�1 and

the integral distribution of absolute maximum is concen-
trated in the narrow region H /H���

2 /H0
2�1 near H0. Us-

ing this fact, one can get from Eq. �48� the probability dis-
tribution of the maximums coordinate

W�y,x,t� =
1

�2�L2�t�
exp −

�x − y�2

2L2�t�
, �64�

where

L�t� = 
��t

h0
�1/2

= ���t�1/2d−1/4
log
��t

leff
2 �2��1/d�−1/4

�65�

is the integral scale of the turbulence. From Eqs. �10� and
�64�, we see that the one-dimensional probability distribution
of the velocity field is Gaussian and isotropic. For the energy
of each component, we have

Ei�t� = �v,i
2 =

L2�t�
t2 = 
��

t
�d−1/2
log

��t

leff
2 �2��1/d�−1/2

.

�66�

Thus, for the anisotropic initial field there is the isotropisa-
tion of the turbulence.

For the multidimensional Burgers turbulence, the two-
dimensional probability distribution, correlation function and
energy spectrum where found in �3,16� using so-called “cel-
lular” model. In this model, it is assumed that in different
elementary volumes, the initial potential are independent and
that the potential has a Gaussian distribution. In this model,
there is a free parameter , which is the size of the elemen-
tary cell. In the present work, we consider a continuous ini-
tial random potential field with given correlation function
�42� and �43�. The procedure for calculation of the two-point
probability distribution function is nevertheless similar to
that one used in �3,16�. It is easy to show that for the two-
point p.d.f., we have the same expression as obtained in �3�
for the cell model, but with a size of the cell  changing with
the effective spatial scale leff. The effective spatial scale l0,eff
�55� is determined by the scales l0,i of its initial correlation
function by Eq. �42�. For the two-point p.d.f., correlation
function, and energy spectrum, we also have self-similarity
and isotropisation at large times. In particular for the normal-
ized longitudinal and transverse correlation function of the
velocity field ṽ=v /�v,i, we have

B̃LL�x̃� = �ṽ1Lṽ2L� =
d

dx̃
�x̃P�x̃�� , �67�

B̃NN�x̃� =
1

2
�ṽ1Nṽ2N� = P�x̃� , �68�

where x̃=x /L�t� and

P�x̃� =
1

2
�

−�

� dz

g
 x̃ + z

2
�exp �x̃ + z�2

8
� + g
 x̃ − z

2
�exp �x̃ − z�2

8
� , �69�
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g�z� � �
−�

z

e−s2/2ds . �70�

It may be shown that the function P�x̃� is the probability of
having no shock within an Eulerian interval of length x̃L�t�.
As far as potential isotropic fields are concerned, the normal-
ized energy spectrum e�k� is formulated via a one-
dimensional spectrum eNN�k� of the transverse component.
The energy spectrum Ev�k , t� is then isotropic and self-
similar

E�k,t� =
L3�t�

t2 Ẽ�kL�t�� . �71�

At large wave number k, the discontinuity initiation leads to
the power asymptotic behavior E�k , t�	k−2. At small wave
number, one also has a universal behavior

E�k,t� = kd+1L4+d�t�
t2 	 kd+1td/2, �72�

which has to do with the nonlinear generation of low-
frequency component. In particular for the three-dimensional
turbulence we have E�k , t�	k4t3/2. For large, but finite Rey-
nolds numbers, the “shocks” have a finite width �	�t /L�t�
and their relative width increases slowly with time � /L�t�
	�log���t / leff

2 ��1/2. Thus, at very large time, we have a linear
stage of evolution.

C. Linear stage of evolution of Burgers turbulence

Let us now consider the linear stage of evolution of a
random field, when the potential ��x , t� and the velocity field
v�x , t� �16� are linearly connected with the solution u�x , t� of
the linear diffusion Eq. �7�. Here, u�x , t� is the relative fluc-
tuation of the field U�x , t� �15�. Introduce the spectral density
of the field u�x , t� as

Eu�k,t� =
1

�2��d� Bu�z,t�ei�kz�dz , �73�

where Bu�z , t�= �u�z , t�u�0, t�� is a correlation function of

relative fluctuation field Ũ�x , t�. The evolution of the spectral
density Eu�k , t� and variance �u

2�t� of u are described by the
equations

Eu�k,t� = Eu0�k�e−2�k2t, Eu0�k� = Eu�k,0� , �74�

�u
2�t� =� Eu0�k�e−2�k2tdk . �75�

For homogeneous Gaussian initial potentials �0�x�, we have
from �6�

Eu0�k� =
1

�2��d� exp
B��z�
4�2 � − 1�ei�kz�dz , �76�

where B��z� is the correlation function of the initial potential
�0�x�. The condition for Burgers turbulence to enter the lin-
ear regime is t� tlin, where tlin is determined from the equa-
tion �u

2�tlin��1. From Eq. �74�, one can see that the large

times behavior of the scalar field u and consequently the
velocity field v will be determined by the behavior of the
energy spectrum Eu0�k� at small wave numbers k. When the
correlation function of initial potential �0�x� may be repre-
sented in the form �42� at small � and B��� � ��1 for ���

 lst, then from Eq. �76�, we have that the spectrum Eu0�k� at
k�Re0 / leff is flat and

Eu0�k = 0� = Du �
1

�2��d/2 �leff/Re0�dexp�Re0
2� , �77�

where leff is determined by Eq. �55�. The spectrum of the
field u at large time is isotropic and has an universal form

Eu�k,t� = Due−2�k2t �78�

and consequently isotropic is the velocity field �3,16,27�. The
energy of each component decays as Ei�t�	Du��t�−�d+2�/2.

Consider now the case when the initial potential has a
correlation function of the form �42� at small x but has long
range correlations extending to large x �27�

B��x� = ��
2��x�/llong�−�FB�x/�x��, � 
 0. �79�

Here, the function FB�x / �x�� describes the anisotropy of cor-
relation function at long distances. If �
d the evolution of
the spectrum of u Eq. �78� and of the velocity v will be the
same as in the absence of long range correlations �27�. At
0	�	d, the energy spectrum of initial potential has singu-
larities at small wave number

E��k� = ��
2 llong

� �k��−dFE�k/�k��, 0 	 � 	 d , �80�

where the function FE�k / �k�� is determined by the function
FB�x / �x�� and describes the anisotropy of potential spectrum
at small wave number. It was shown �27� that in this case we
have the conservation of anisotropy at linear stage and the
asymptotic behavior of the spectrum of u is determined by
the Eq. �74� where

Eu�k� = E��k�/�4��2 = Re0
2 llong

� �k��−dFE�k/k� . �81�

For the velocity spectrum, it means that it reproduces the
initial spectrum of velocity at small wave number multiplied
by the exponential factor exp�−2�k2t�. These results were
formulated in �27� for the correlation function of velocity
fields. In the paper �27� it was also shown that asymptotically
the velocity field has a Gaussian distribution. But the trans-
formation processes to the linear stage are not trivial and
have to be estimated in the spectral representation. The be-
havior of the spectral density of the field u at small wave
number k is determined by the tail of correlation function
B��x� Eq. �79� and from Eq. �76�, we have that the spectrum
is described by the Eq. �81�. But at higher values of the
modulus of the wave number k, the anisotropic power spec-
trum is transformed to the flat spectrum �77�. The wave num-
ber kaf where this transformation takes place may be esti-
mated from the condition that at k�kaf these spectrum are of
the same order and we have

kaf � Re0
�d+2�/�d−��
 llong

�

leff
d �1/�d−��

e−Re0
2/�d−��. �82�
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The condition for Burgers turbulence to enter the linear
regime is now determined from the equation �u

2�tlin��1. The
main contribution in the variance �u

2�t� �75� is from the flat
spectrum �77�. The wave number klin���tlin�−1/2 is

klin � �Re0/leff�e−Re0
2/d. �83�

Thus, for the ratio of these two critical wave numbers we
have

kaf/klin � Re0
��+2�/�d−��
 llong

leff
�1/�d−��

e−Re0
2 �/d�d−��, �84�

and for the large initial Reynolds number kaf �klin. From the
equation �u

2�tlin��1, we have that tlin
� tnleff Re0

−1 exp�2 Re0
2� and is extremely large in comparison

with the effective nonlinear time tnleff� leff
2 /��. It is easy to

see from Eq. �82� that the time of “isotropization” tiso
��kaf

2 is much greater than the nonlinear time tiso

	 tnleffe
2 Re0

2
�/d�d−�� and this difference increases when the in-

dex � approaches the critical value ��d.

V. DISCUSSION AND CONCLUSION

Let us now discuss the evolution of the multidimensional
Burgers turbulence in presence of anisotropy at small Eq.
�42� or large Eq. �79� spatial scales. In the initial perturba-
tion, the energy of the velocity component in direction i is
��

2 / l0,i
2 and is greater for directions having smaller initial

characteristic scales l0,i. At the initial stage, the scale of the
turbulence in this direction will increase faster than in the
others and we have the energy decay primarily of this com-
ponent �see Sec. IV A�. When the time t becomes greater
than the nonlinear time of the component with the largest
scale tnl,i=max l0,i

2 /��, we will have the isotropization of the
turbulence for scales of the order of the integral scale L�t�
�65�. In Sec. IV B, we did consider the situation in the ab-
sence of long scale correlation. But based on the results of

the one-dimensional case �36�, we may suggest that there is
no influence of a long scale correlation on the evolution of
the energy. Nevertheless, we still have conservation of the
anisotropy at large scales �x��L�t� �79�. In the spectral rep-
resentation, we have conservation of the initial spectrum and
anisotropy at small wave number, but at k	ks�t�	 t−p, the
initial spectrum transforms into a self-similar spectrum �71�
with the universal behavior E�k , t�	k�d+1� �72� for kL�t�	1.
Let us define an energy wave number kL�t�=L−1�t�
	�t���−1/2, which is roughly the wave number around which
most of the kinetic energy resides. Hence, the switching
wave number ks�t� goes to zero much faster than the energy
wave number. If we take into account the finite viscosity, we
have that at times t� tlin� tnleff Re0

−1 exp�2 Re0
2�, the nonlin-

ear evolution of the spectrum becomes frozen and only the
linear decay of the small scales is significant Eq. �74�. The
frozen spectrum of the velocity potential has a critical wave
number kaf below which the spectrum is anisotropic and re-
produces the initial spectrum, and for k
kaf the spectrum is
flat Eq. �77�. Thus, at times taf � t� tlin, this part of the spec-
trum will play the dominant role in the evolution of the ve-
locity spectrum, and consequently the energy of all velocity
components will be equal. At times t� taf, the spectrum of
the velocity will reproduce the small scale part of the initial
velocity spectrum, but multiplied by an exponential factor
Eq. �74�, and will in the end be an anisotropic field.
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